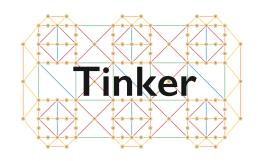


Aegaeon: Effective GPU Pooling for Concurrent LLM Serving on the Market

Yuxing Xiang¹, Xue Li², Kun Qian², Yufan Yang², Diwen Zhu², Wenyuan Yu², Ennan Zhai², Xuanzhe Liu¹, Xin Jin¹, Jingren Zhou²

Models: growing variety

- Modern model markets feature many different LLMs
 - Thousands of models on Hugging Face
 - Growing faster with fine-tuning services like Tinker

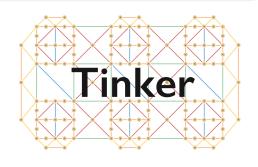


Models: growing variety

- ❖ Modern model markets feature many different LLMs
 - Thousands of models on Hugging Face
 - Growing faster with fine-tuning services like Tinker

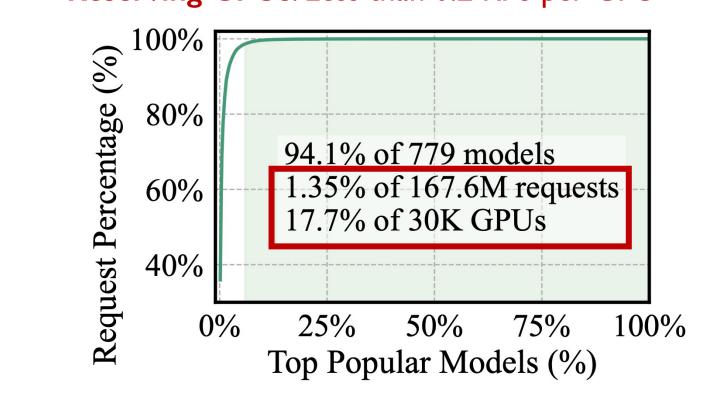
Concurrent LLM serving Many models at the same time

Hugging Face



Workload: highly skewed

- A one-hour concurrent workload from Alibaba Cloud Model Studio
 - Over 90% of models, with less than 2% of requests
 - Long tail of low-rate models
 - Reserving GPUs: Less than 0.2 RPS per GPU



```
167.6M x 1.35% req
/ (17.7% x 30K GPU)
/ (3600s)
```

≈ 0.118 RPS / GPU

Concurrent LLM serving is extremely wasteful!

Concurrent LLM serving

(w/ GPU reservation)

- One model per GPU
- < 0.2 RPS per GPU

Single-LLM serving

- Optimized with SGLang
- > 2 RPS per GPU*

10x Resource Efficiency Gap!

^{*} Estimated with SGLang's DeepSeek deployment blog.

Closing the gap with GPU Pooling

Concurrent LLM serving

(w/ GPU reservation)

- One model per GPU
- < 0.2 RPS per GPU

Single-LLM serving

- Optimized with SGLang
- > 2 RPS per GPU*

Closing the gap with GPU Pooling

Concurrent LLM serving (w/ GPU reservation)

- One model per GPU
- < 0.2 RPS per GPU →

Concurrent LLM serving (w/ GPU pooling)

- Multiple (n) models per GPU
- $0.2 \times n$ RPS per GPU

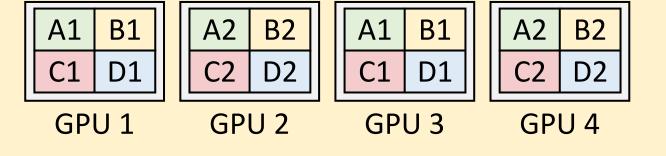
Single-LLM serving

- Optimized with SGLang
- > 2 RPS per GPU*

Serve as many models as possible per GPU!

Existing GPU pooling is not effective

- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling
- *Multiplexing is static: serving with multiple (sharded) models per GPU

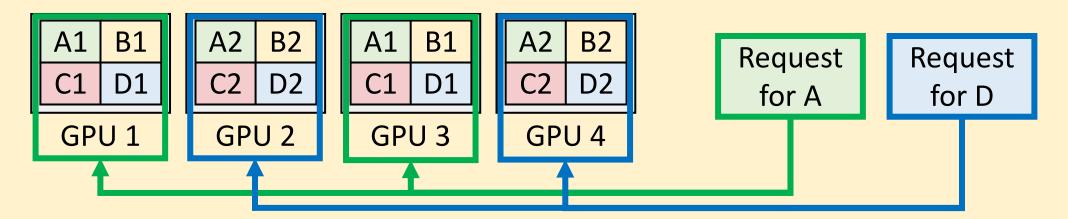


Request for A

Request for D

Existing GPU pooling is not effective

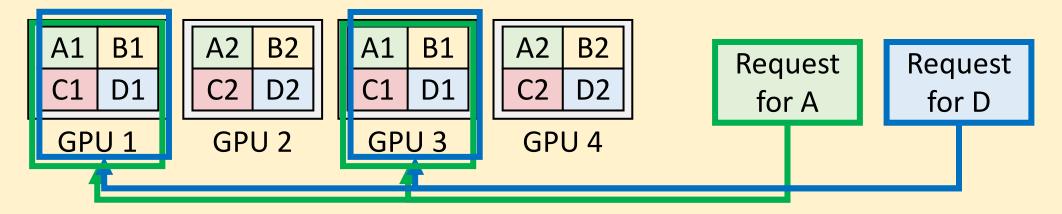
- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling
- *Multiplexing is static: serving with multiple (sharded) models per GPU



Temporal Multiplexing

Existing GPU pooling is not effective

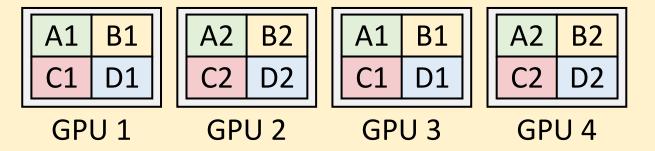
- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling
- *Multiplexing is static: serving with multiple (sharded) models per GPU



Spatial Multiplexing

Multiplexing is limited

- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling
- *Multiplexing is static: serving with multiple (sharded) models per GPU

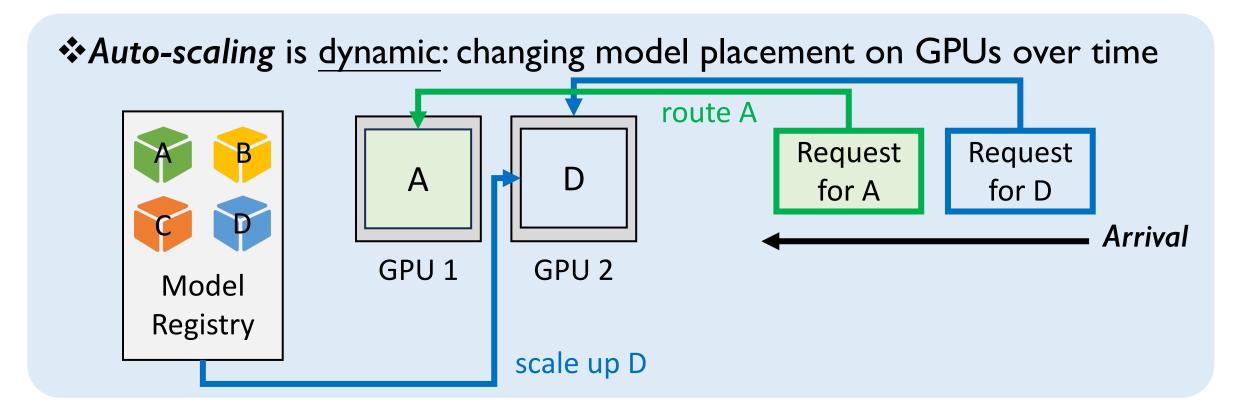


8 models on 4 GPUs => 2 models per GPU

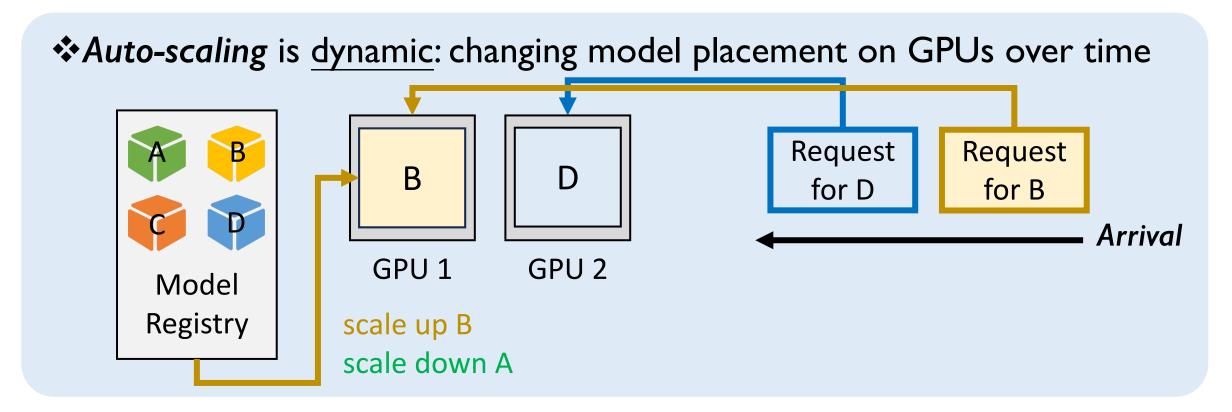
Limited by GPU memory capacity:

At most two 14B models (FP16) per 80GB GPU

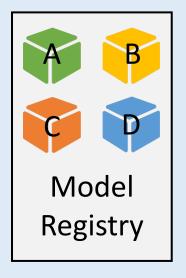
- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling

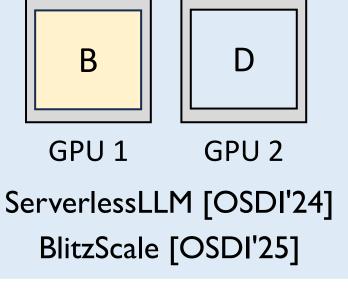


- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling



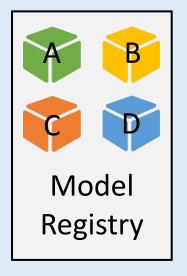
- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling
- *Auto-scaling is dynamic: changing model placement on GPUs over time

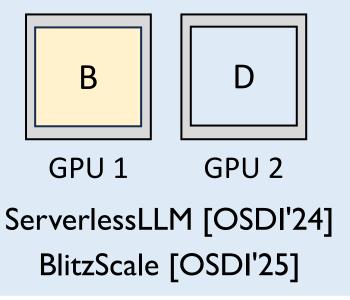




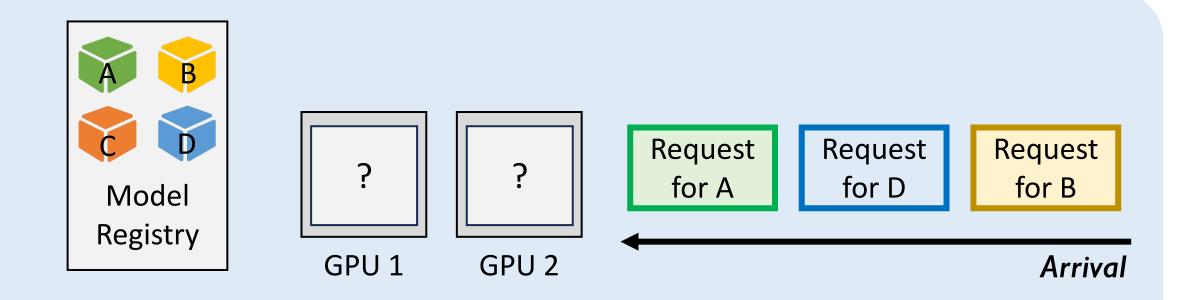
Not limited by memory capacity!

- ❖ Not effective limited number of models per GPU
- Two existing approaches for GPU pooling: multiplexing and auto-scaling
- *Auto-scaling is dynamic: changing model placement on GPUs over time

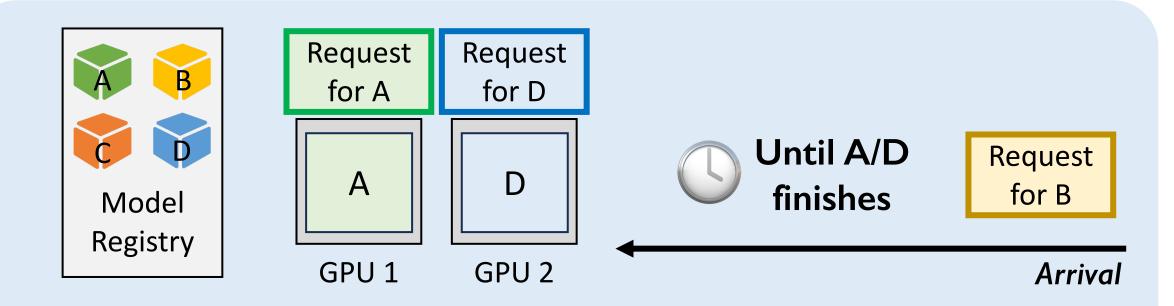




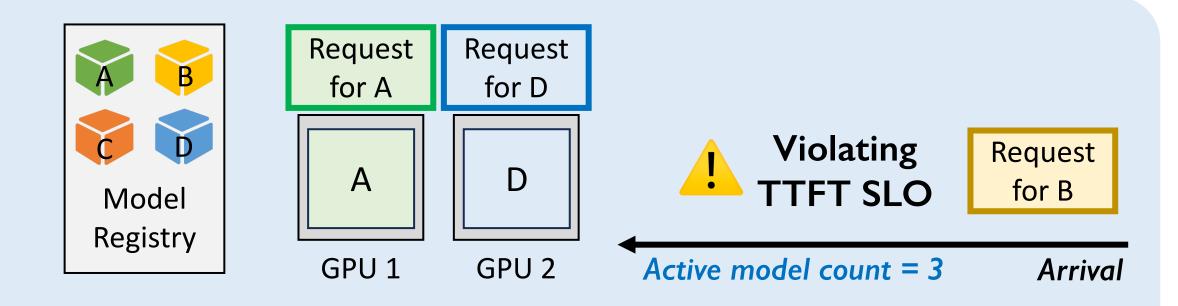
Existing auto-scaling is still limited



Existing auto-scaling is still limited



Existing auto-scaling is still limited



Most models are active in a concurrent workload!

- Intuitively, because LLM requests tends to be very long.
- ❖ Formally,

Theorem 1. Suppose the request arrival rate for each model follows a Poisson process with rate λ , and the average time to serve a request is T. The expected active model count $\mathbb{E}[m]$ is given by:

$$\mathbb{E}[m] = M \cdot (1 - e^{-\lambda T}) \tag{1}$$

λ = 0.037 RPS T = 16.79s (Data @ Alibaba)

 $M/E[m] \approx 2.16$

Limited by active model count: At most M/E[m] < 3 models per GPU

Most models are active in a concurrent workload!

- Intuitively, because LLM requests tends to be very long.
- Formally,

Theorem 1. Suppose the request arrival rate for each model follows a Poisson process with rate λ , and the average time to serve a request is for improvement! T = 16.79s model count $\mathbb{E}[m]$ is given by:

$$\mathbb{E}[m] = M \cdot (1 - e^{-\lambda T}) \tag{1}$$

 $M/E[m] \approx 2.16$

Limited by active model count:
At most M/E[m] < 3 models per GPU

Key: Request-level auto-scaling is inadequate

Request-Level Auto-scaling

Request for A

D

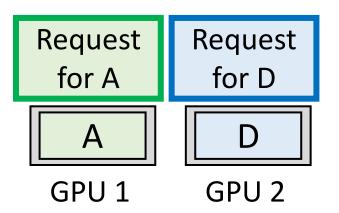
Head-of-line Blocking

Request for B

Arrival

Our approach: token-level auto-scaling

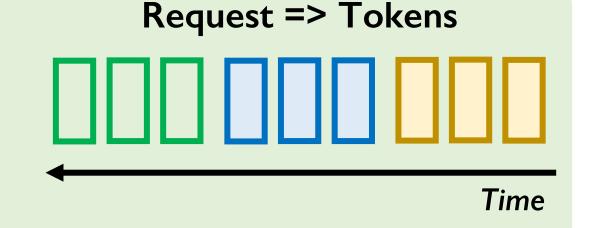
Request-Level Auto-scaling



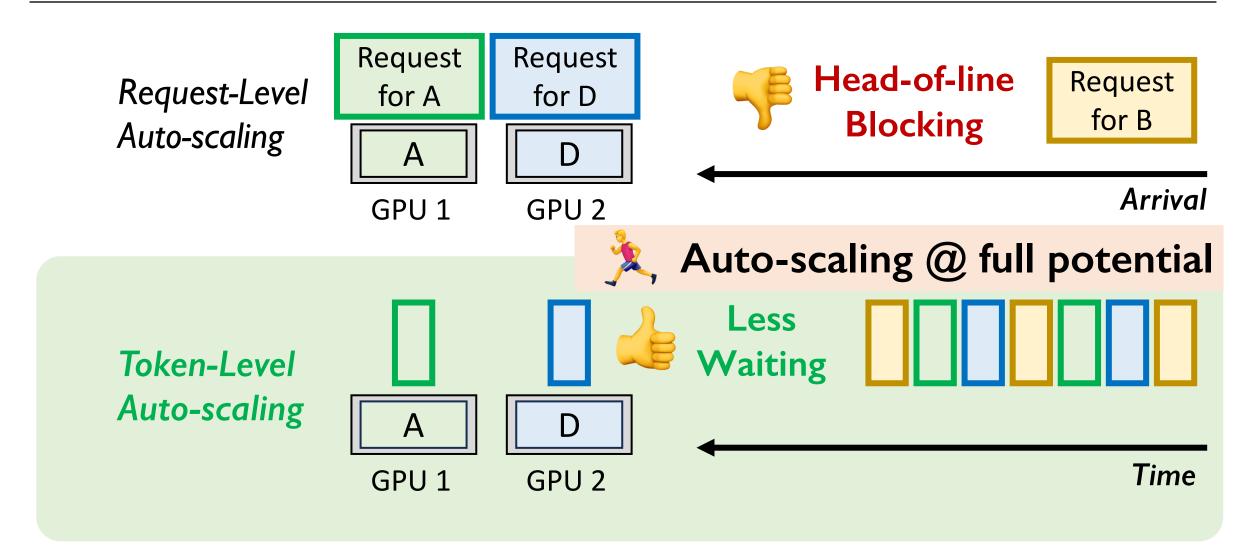
Request for B

Arrival

Token-Level Auto-scaling



Our approach: token-level auto-scaling



Token-level auto-scaling: most effective

Concurrent LLM serving

(w/ GPU pooling)

- Multiple (n) models per GPU
- 0.2 x n RPS per GPU

Effective: Serve as many models as possible per GPU!

Given M concurrent models (m active models):

	Multiplexing	Request-Level Auto-scaling	Token-Level Auto-scaling (ours)
#GPU Limitation	M/2 (memory)	m (active models)	< m
#Model/GPU (typical)	2	2~3	Up to 7 (later)

Design Overview

Aegaeon: token-level auto-scaling for concurrent LLM serving.

Scheduling:

Token generation jobs with scaling overhead?

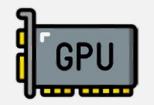
Requests

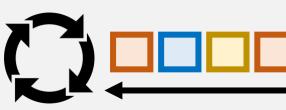
Request A

Request B

Request C

GPUInstances





Time

Auto-scaling:
Scaling models as efficiently as possible?

Aegaeon Components

Reused Inference Engine

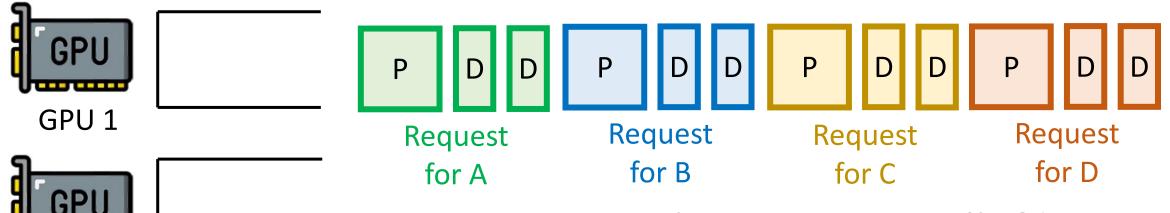
Model Cache

Unifed KV Cache

Token-level request scheduling

GPU 2

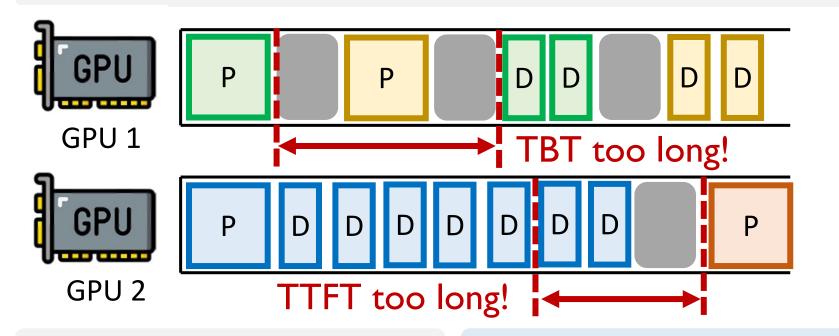
Goal: Given requests, #GPU, SLOs (TTFT/TBT), maximize SLO attainment.



Diverse prefill & decoding time/SLO!

Scheduling with P/D Disaggregation

Goal: Given requests, #GPU, SLOs (TTFT/TBT), maximize SLO attainment.



Bursty prefill: violates TBT SLO

Long-tail decoding: violates TTFT SLO

Problem: Prefill-decoding interference.

Solution: Schedule with P/D disaggregation for simplifying scheduling design.

Prefill scheduling: grouped FCFS

Prefill execution & auto-scaling overhead are comparable (seconds)

Goal: Avoid frequent auto-scaling during prefill.

Solution: Group prefill requests by models; schedule groups with FCFS.

FCFS: Reduce starvation

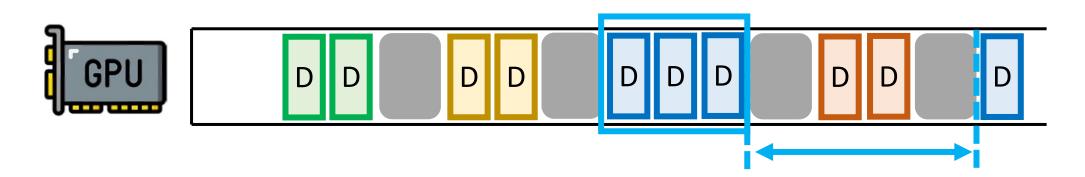
Decoding scheduling: batched Round-Robin

- Decoding execution (O(10) ms) often shorter than TBT SLO (100 ms) in industrial practice.
- Decoding tokens can be <u>streamed</u> to avoid user-perceivable stalls.
- After several decoding steps, a request earns some slack time that can be used to serve other models.

Goal: Systematically utilize the slack time during decoding to switch between models at the token-level.

Solution: Round-robin with calculated time quota and guaranteed SLOs.

Decoding scheduling: batched Round-Robin



Detailed math in our paper!

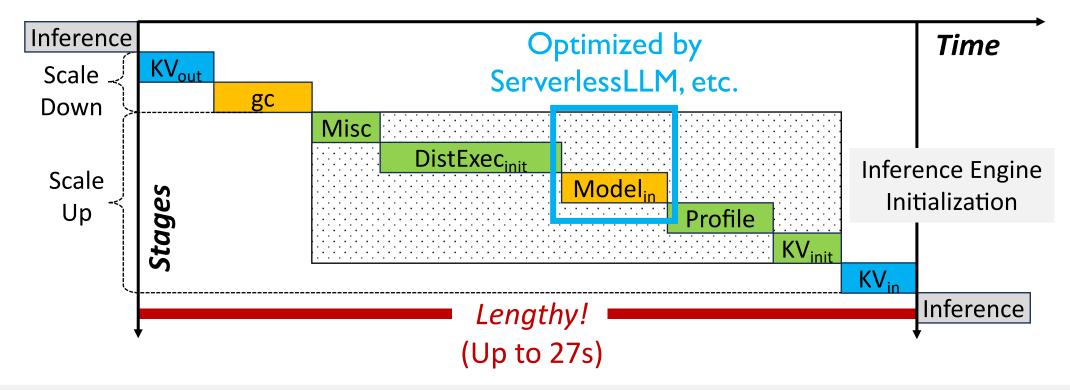
No SLO violation:
masked by streaming
previous tokens

$$q_i = \frac{c}{n_i \cdot (\alpha - \sum_k \frac{1}{n_k})}$$

$$\alpha = \max(\frac{c}{\min_k(n_k) \cdot Q_{\text{MAX}}} + \Sigma_k \frac{1}{n_k}, 0.5)$$

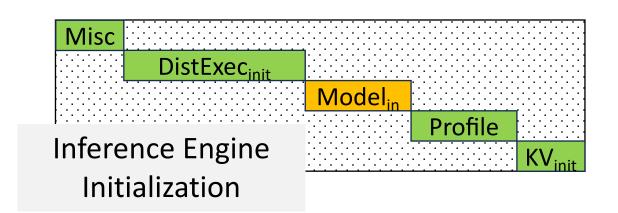
Auto-scaling: time-consuming by default

Full sequence of preemptive auto-scaling:



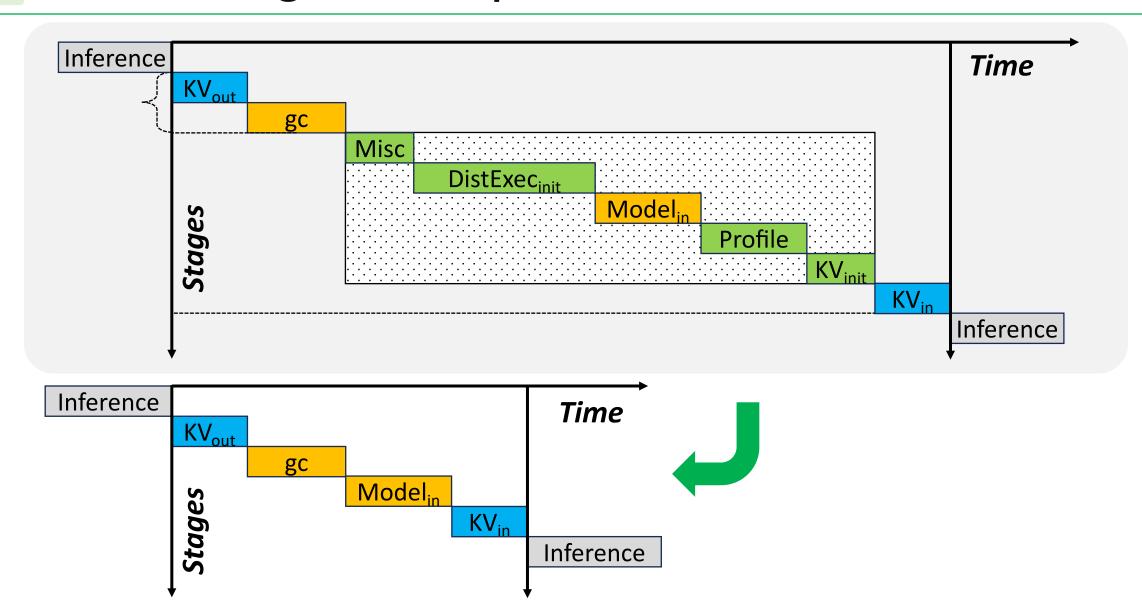
Goal: Conduct full-stack optimizations for accelerating auto-scaling.

Auto-scaling w/ Component Reuse

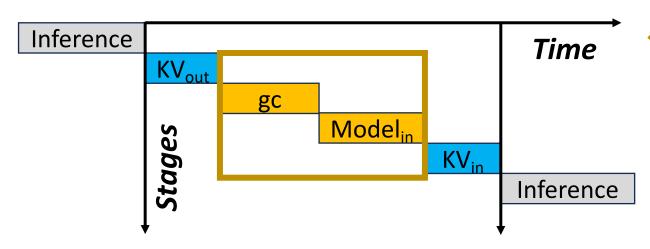


- Components (except the weights) can be shared across models
- Components Reuse: pre-build NCCL/Ray clusters, pre-profile, ...

Auto-scaling w/ Component Reuse



Auto-scaling w/ Explicit Memory Management

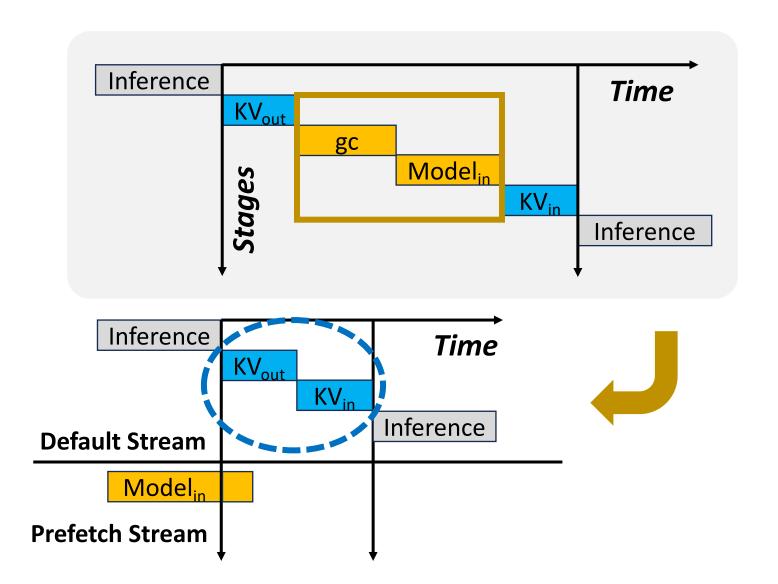


- Memory fragmentation during auto-scaling
 - VRAM: Library (PyTorch) inefficiencies (torch.cuda.empty_cache())
 - DRAM: Different KV cache shapes

Solution: Explicitly manage VRAM and DRAM to avoid fragmentation.

- ✓ Custom VRAM allocator
- ✓ Unified KV cache: shape-specific on-demand allocation
- ✓ Model caching and prefetching

Auto-scaling: the final stretch

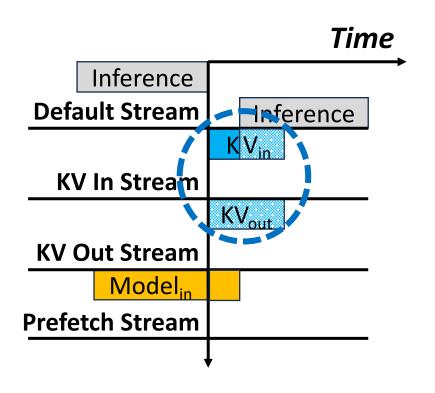


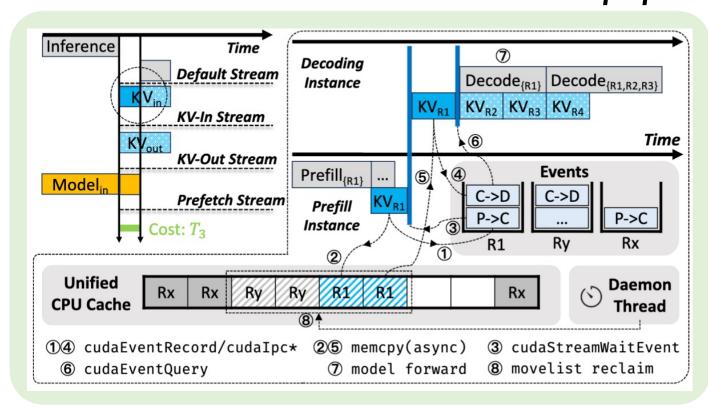
Goal: Maximally overlapping the KV cache transfers.

Auto-scaling w/ Fine-Grained KV\$ Synchronization

- Fine-grained KV cache synchronization with <u>CUDA events</u>
 - Make transfers fully asynchronous
 - Then synchronize minimally with CUDA events

Full design in our paper!

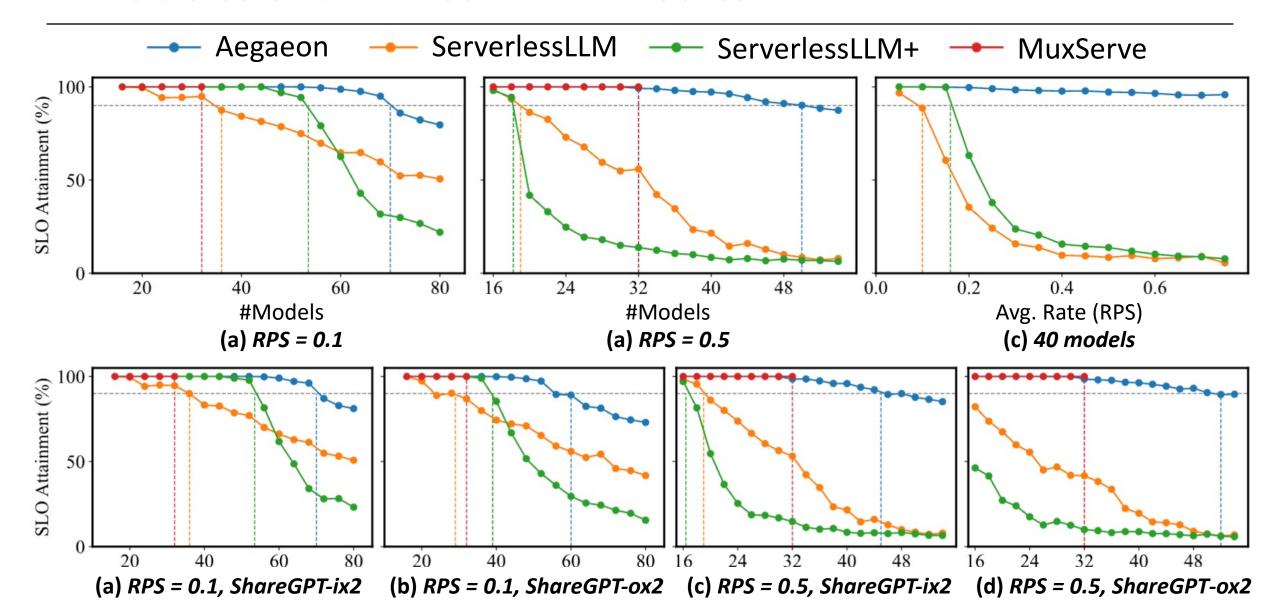


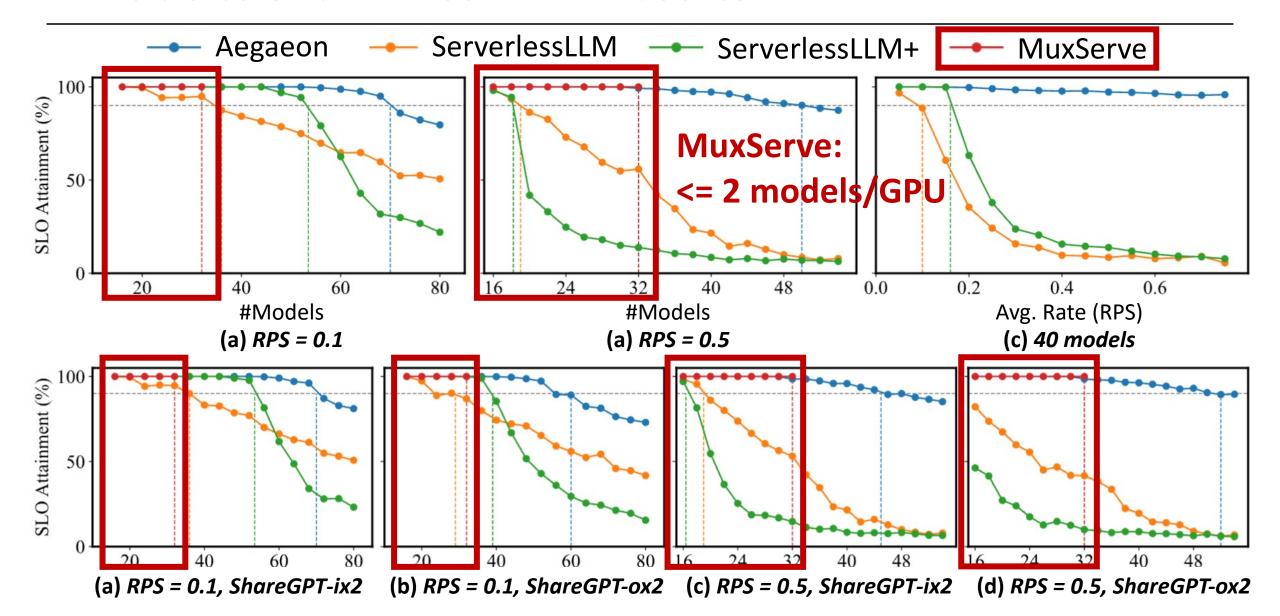


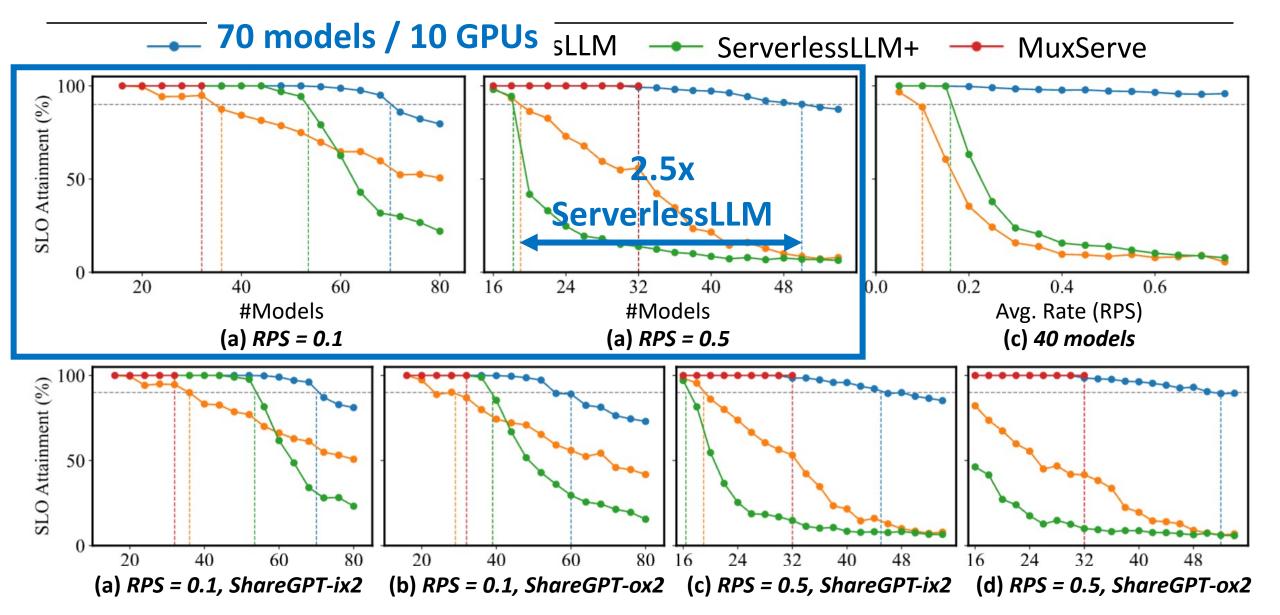
Evaluation Setup

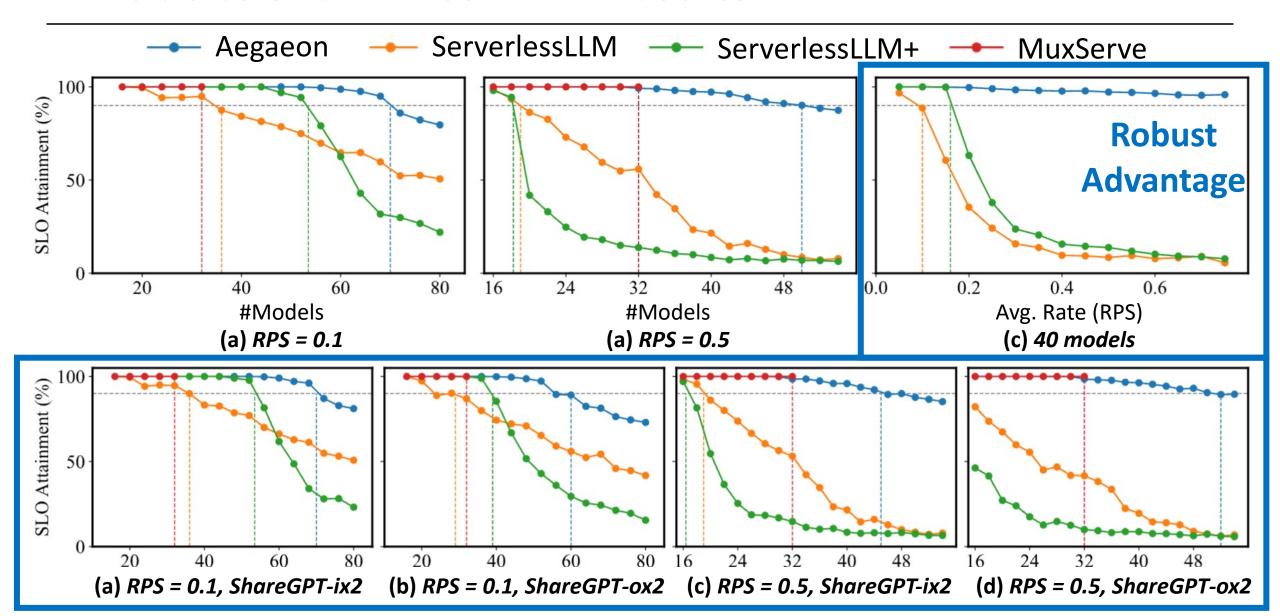
- *Baselines: ServerlessLLM (auto-scaling), MuxServe (multiplexing).
 - ServerlessLLM+: ServerlessLLM + SRTF scheduling (oracle)
- **♦ Metrics**: SLO attainment. Base TTFT is 10s, TBT is 100ms.
 - Also scaled to 0.5x, 0.3x, and 0.2x.

- ❖Workload: (1) ShareGPT + Poisson (2) real traffic for deployment
 - Models: 80 different models, including LLaMA, Qwen, InternLM, Yi, etc. The size ranges from 6B to 14B. 72B models are also evaluated.
- ❖Cluster: 2x8 H800 nodes; ITB host memory, PCle 5.0.
 - Deployment: 6 GPUs for prefill, 10 for decoding.



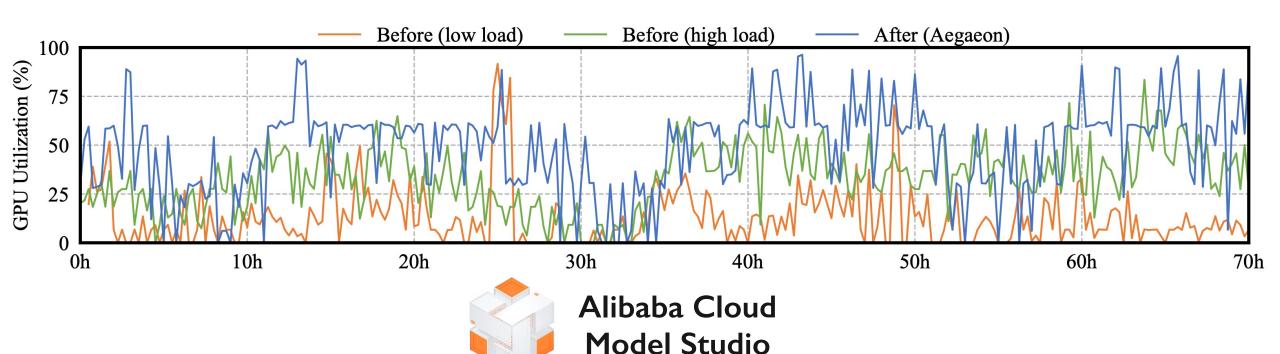






Evaluation: beta deployment

- Beta-deployed on a 213-GPU cluster (H20), serving nineteen 32-72B (TP=4), and twenty-eight 1.8B-7B models (TP=1).
- Previously served by 1,192 GPUs (<u>82% saving</u>).



Summary

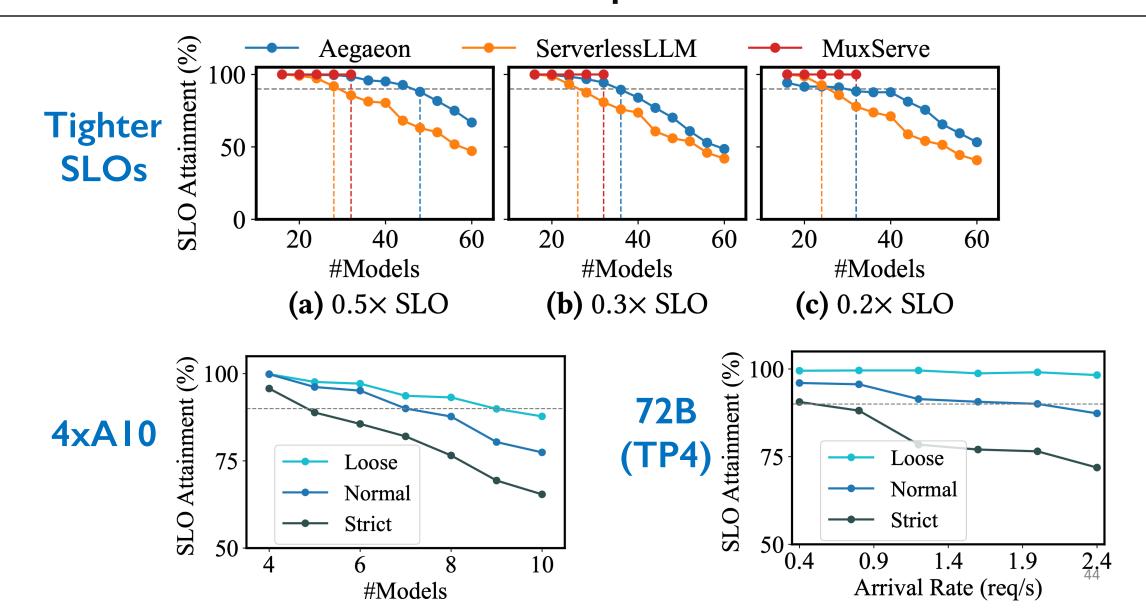
Aegaeon proposes token-level auto-scaling to achieve effective GPU pooling for concurrent LLM serving:

- Workload modeling and effectiveness analysis (as many models as possible!)
- Token-level request scheduling algorithms
- Efficient auto-scaling optimizations

Aegaeon reduces GPU usage by up to 82% in beta deployment.

Thanks for Listening!

Evaluation: Alternative setups



SGLang's DeepSeek Deployment Blog

LMSYS ORG

Projects

Blog

About

Donations

Chatbot Arena (graduated)

Prefill

	DeepSeek Blog (excl. cache hit)	DeepSeek Profile	SGLang (Default)	SGLang + Simulated Perfect EPLB
Batch Size	N/A	16,384	16,384	16,384
Input Length	N/A	4,096	4,096	4,096
Throughput (per node)	32,206	62,713	50,302	59,337

Decoding

	DeepSeek Blog	DeepSeek Profile	SGLang (Default)	SGLang + Simulated MTP (Slow Attention)
Batch Size	N/A	128	256	128
KV Cache Length	4,989	4,096	2,000	4,000
Number of Nodes	18	16	9	9
Throughput (per node)	14,800	18,598	22,282	17,373